

Where (exactly) are my things? Learn how Galileo can empower your IoT solution

Carmen Aguilera, Justyna Redelkiewicz - European GNSS Agency

November 2018

The European GNSS Agency (GSA) is responsible for market development and operations of Galileo and EGNOS

• Staff: around 160

Nationalities: 22

Headquarters: Prague,Czech Republic

- Other Locations:
 - France
 - The Netherlands
 - Spain
 - United Kingdom

European GNSS (EGNSS) location and timing

Galileo and EGNOS are the European GNSS programmes

- Worldwide GNSS system "made in EU"
- Delivering free of charge Open service and High accuracy service
- 26 satellites already launched
- Initial Service Capability declared in 2016 and Full Operational Capability planned in 2020

- Regional Satellite Based Augmentation System
- Improves GNSS performance by providing improved accuracy and integrity
- European coverage
- Fully operational, free of charge and widely used in Europe since 2011

The Galileo implementation plan accelerates with Initial Services in 2016 and Enhanced Services in 2019

Last Galileo launch:
25th of July 2018
4 satellites launched in an
Ariane 5 launcher from
Kourou

Galileo is implemented in a step-wise approach

26 satellites have been launched

2020

- 4 satellites are in production/being procured:
 - The remaining ones by 2020

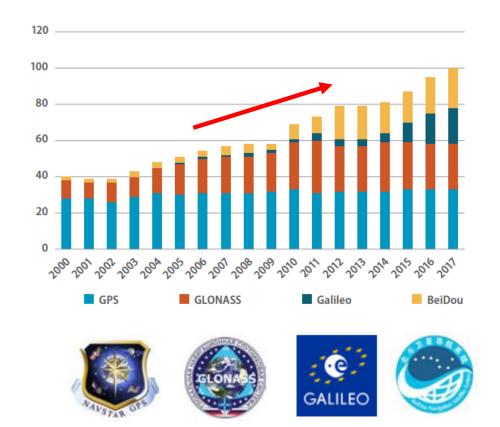
2046	Initial Operational Capability
2016	Initial services for Open Service (OS)

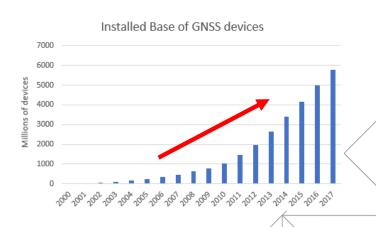
Search and Rescue Service (SAR)
Public Regulated Service (PRS)
and demonstrator for High accuracy Service (HAS)

OS Navigation Message Authentication
(OS-NMA) and High Accuracy (HA)

Full Operational Capability
Full services, 30 satellites
An independent civilian infrastructure

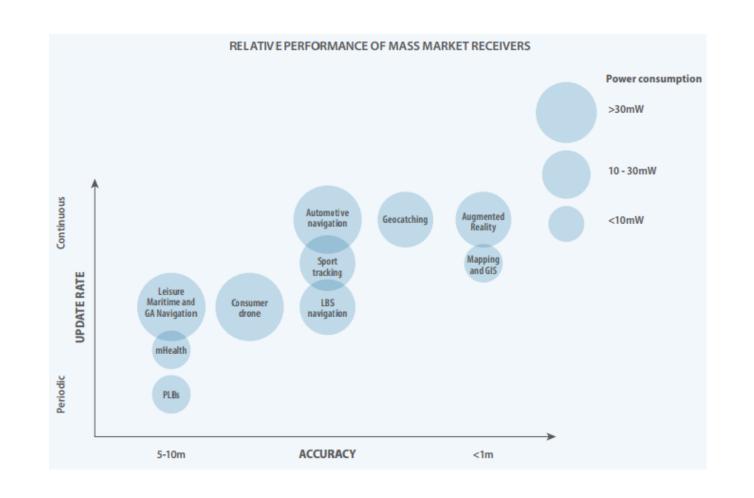
Galileo is used today in professional and consumer devices, including IoT chipset platforms




The continuous evolution of GNSS infrastructure responds to the increasing user demand

OPERATIONAL GNSS SATELLITES

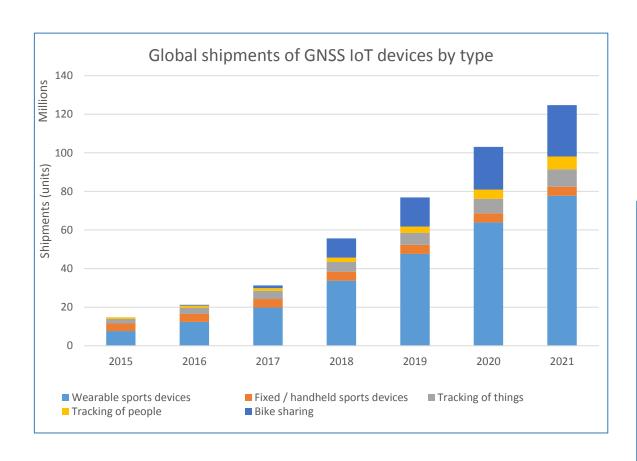
All global and regional GNSS constellations are developing, modernising and innovating, with more than 100 GNSS satellites now available

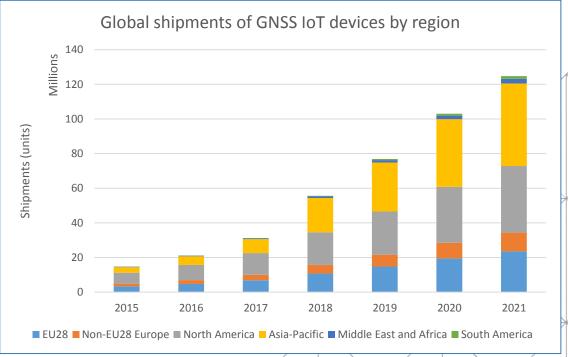

In addition to the global services, the SBAS coverage is increasing

SBAS INDICATIVE SERVICE AREAS WAAS **EGNOS** V3 in 2025: MC (GPS + Galileo) SDCM 2019: Ground infrastructure for L5 L2 P(Y) 2020: L1, L3C, L5C to GPS L5 FOC over 2 years MSAS SDCM* 2017: MCMF experiment V2 in 2020 for non-aviation WAAS Open Service in 2020 KAAS **BDSBAS BDSBAS** 4 GEO satellites by 2020 **ASECNA Australian SBAS** SBAS Testing until 2019 for multiple user sectors SACCSA SACCSA Researching expansion of First testing in 2011 coverage to GULF region Australian SBAS Under development/definition *System not yet certified for civil aviation

The users requirements for positioning differ significantly by application area

Several technologies can provide positioning capabilities relevant to locate "things"


Main absolute positioning technologies and accuracy


	Indoor	Outdoor	Accuracy	
Natural based	Cell-ID		200-5000m	
Network based	Cell Tower Triangulation		50-1000m	
Handset based		GNSS	1 - 50m	
Hybrid	A-GNSS		1-50M	
	Wi-Fi		3-10m /20-50m	
Infrastructure	Bluetooth		3-10m	
based	UWB		20 cm-10 m	
	RFID		<3m	

- Network based: (Cell-ID, E-OTD, TDOA etc.) using the telecommunication networks
- **Handset based**: (GNSS) the handset itself is the primary means of positioning the user. The A-GNSS corresponds to a hybrid technology based on the GNSS but using the cellular network
- Infrastructure based: (Bluetooth, UWB, Wi-Fi or RFID) the position is computed by evaluating of the distance between the device and transmitters (for example a Bluetooth beacon or a Wi-FI router)

GNSS in IoT: the use today and in near future

The demand for better location performance is driving the evolution of GNSS technology along three main areas

Ubiquity

As PNT applications continue to expand in consumer and commercial segments, demand is also growing for uninterrupted, ubiquitous, and seamless access to position information

Accuracy

The development of new semiprofessional applications supported by mobile devices is pulling the demand for increased location accuracy

Security

Addressing jamming and spoofing is key especially where PNT is at the core of safety-critical or commercially sensitive applications

11

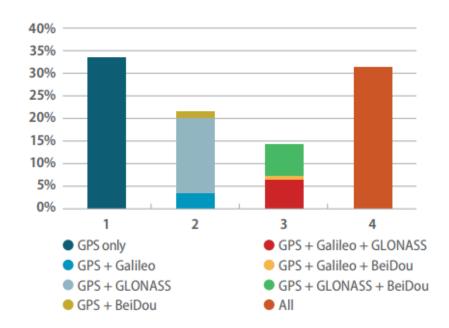
Ubiquity High availability of location information is increasingly demanded by IoT applications

Floating sharing

Autonomous robots

Lone worker protection

Law enforcement


Elderly people monitoring

What works best in geolocation?

Multi-constellation for better availability

Supported constellations by GNSS receivers

Multi – constellation is already widely used in many applications

The most popular way to provide multi-constellation support is to cover all constellations, which represents over 30% of receivers

Main benefits include:

- ✓ Increased availability
- ✓ Increased accuracy
- ✓ Improved robustness

GNSS USER TECHNOLOGY REPORT ISSUE 2

Emerging applications are more and more demanding in terms of accuracy

Augmented reality

mHealth

Self-driving cars

Autonomous robots

Drones

Smart farming

Augmented Reality (AR) adds value both to high precision and mass market applications

The use of AR in high precision market includes:

City Planning:

✓ In-situ design

Construction:

- ✓ Showcase projects
- ✓ Control progress of work and anticipate problems

Mining:

- Definition of mining area
- ✓ Assessment of environmental licensing scenarios

In mass market AR is used by a large number of applications for:

- Image recognition
- Overlay basic information on outdoor locations

GNSS receivers already meet the key performance parameters required to enable AR: Accuracy and Availability

Autonomous vehicles drive the accuracy and robustness requirements

Audi and Italdesign presenting Pop. Up in 2018

NEXT self-driving pods – live tested in Dubai 2018

Above innovations are not possible without high precision positioning and navigation: -management of autonomous fleet -navigation to customer and to destination -precise "docking" of drones on the vehicles and merging of pods

Positioning is among the challenges that the drone market has to address to develop to its full potential

Challenges for the drone market:

- ✓ Precise and reliable tracking information
- Diverse connectivity requirements
- ✓ Hybridisation of various data sources
- ✓ Harmonisation of regulation

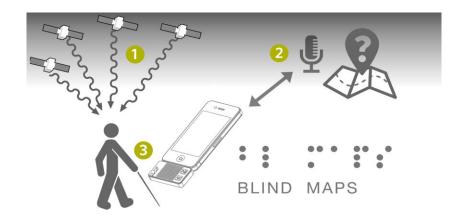

Urban environment

GNSS: Centimetre level accuracy, high update rate Connectivity: High bandwidth important, range might be compromised

Example technology requirements:

Suburban environment

Rural environment



GNSS: Metre level accuracy, update rate can be compromised Connectivity: Long range connectivity, bandwidth might be compromised

Many mHealth applications rely on GNSS, some of them with high accuracy needs

Mobile Health (mHealth) is a sub-segment of eHealth and covers medical and public health practice supported by mobile devices

Main mHealth application categories leverage fusion of big data with GNSS:

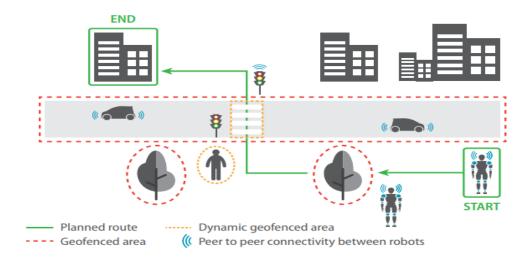
Disability assistance:

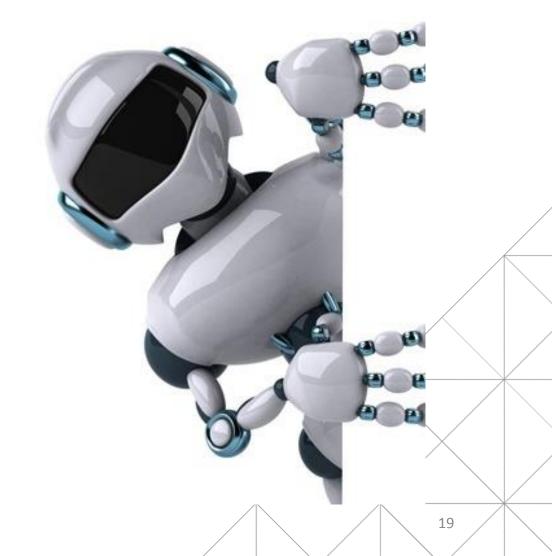
- Navigation solutions for the blind
- Navigation solutions for upper/lower body-impaired individuals
- ✓ Tracking of Alzheimer patients

Well-being:

- ✓ Wearable tracking devices for leisure purposes
- ✓ Wearable tracking devices for professional sports

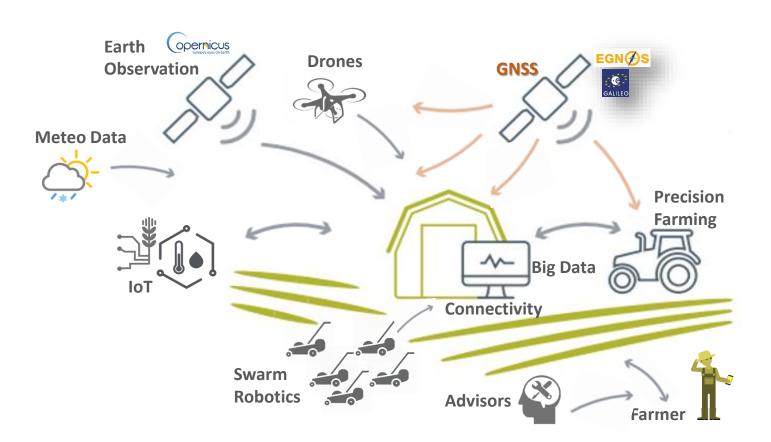
Emergency:


- Personal location beacons for Search and Rescue (\$AR)
- Disaster management smartphone-based applications


Autonomous robots require high levels

of precision to navigate

- ✓ Real world objects and their position in relation to the robot need to be understood with a high degree of precision
- ✓ To mitigate the risk of a robot entering an area it should not, GNSS-based geofencing is being increasingly utilised thanks to its accuracy and availability



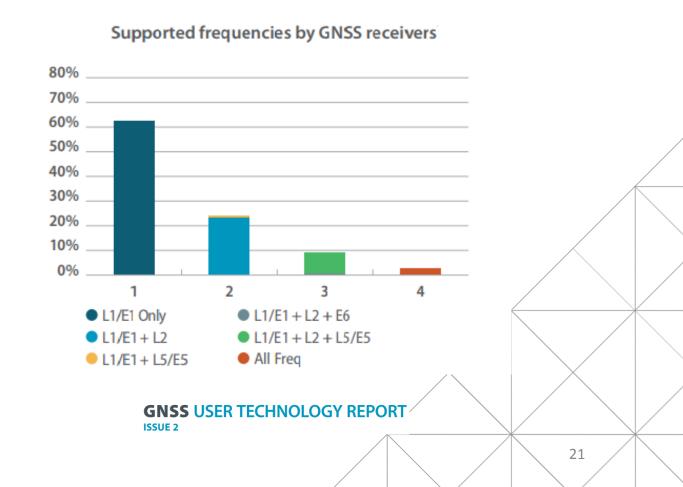
GNSS is at the core of main Smart Farming applications requiring high precision

AUTONOMOUS FARM

GNSS is used for:

- Navigating autonomous tractors/harvesters
 - Positioning of drones
- Navigation of swarm robots
- Geotagging of earth observation data
- Positioning of assets on the farm
 - Geotraceability of agriculture products

What works best in geolocation?


Multi-frequency for better accuracy and robustness

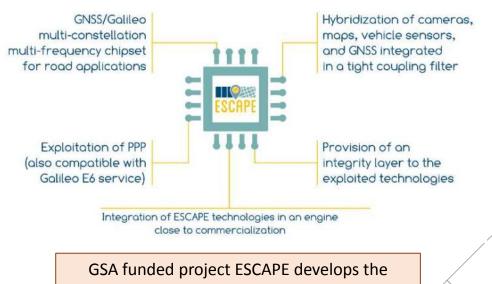
Receivers beyond traditional highprecision applications are also demanding performance that can best be supported by multi-frequency

This has resulted in a drop of nearly 10% in the production of receivers that are single-frequency only, over the last two years

Main benefits include:

- ✓ Increased accuracy
- ✓ Improved robustness

Dual-frequency entered mass market addressing consumer demand for accuracy



First dual frequency phone was launched in May 2018

Xiaomi Mi8 Powered by Broadcom 4775 Dual frequency E1/L1 and E5/L5

Dual frequency enters the functional safety automotive grade receivers

highly automated positioning engine

Why E5/L5 is the best second frequency of choice for your solution?

Wide band signal providing increased accuracy

Exceptional resistance to multipath

In combination with E1 providing iono-free solution

All constellations support this frequency, the number of available signals will grow rapidly

Future GNSS/RNSS common frequencies, showing the potential of E5a/L5 and of E1/L1 combination

	L5 / L5OC / E5a / B2a	L2/L2C/L2OC	E6 / LEX	L1 / L1OC / E1 / B1
GPS	30	30		30
GLONASS	24	24		24
Galileo	30		30	30
BeiDou	35		35	35
QZSS				3
IRNSS	7			
	129	← ARNS*	Bands -	122

Frequency band used by the system, with N = number of satellitesFrequency band not used by the system

E1/E5 combination is recognized in all segments, professional, automotive and also mass market

^{*} ARNS = Aeronautical Radio Navigation Service: Frequency bands allocated worldwide to GNSS on a primary basis, granting a better protection against interference

Galileo can further contribute to IoT with its innovative High Accuracy Service

High Accuracy

- Based on PPP transmission in E6B
- FREE provision

Characteristics

User positioning accuracy with **decimeter** level error (≈20cm)

No need of additional ground communication channel (448 bps allocated on Galileo E6B)

No need of proximity to base stations to access corrections (as opposite to RTK)

Triple frequency to further increase accuracy and reduce PPP convergence time

Improved line-of-sight and better coverage at high latitudes

Security

Authentication of position is expected to reduce the associated spoofing and jamming risk in many application categories

Road (AD, PAYD, RUC)

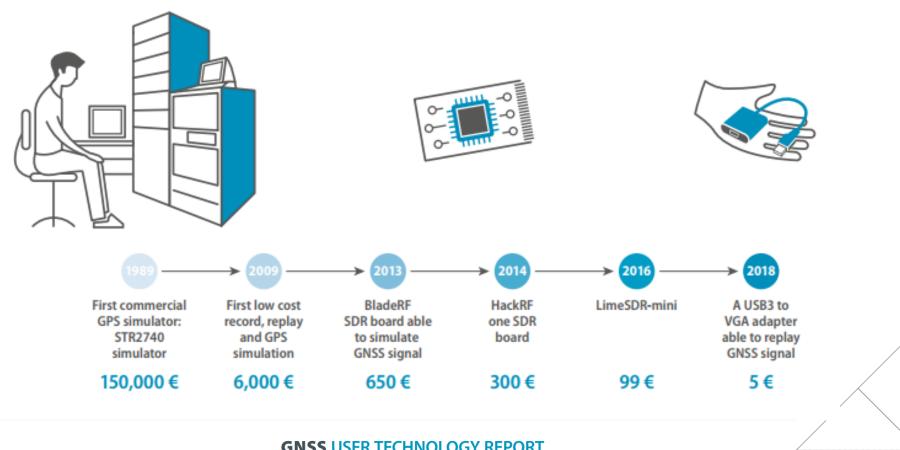
Logistics (proof of delivery)

Mobile payments

Timing & Synchronisation /

Commercial Marine

Augmented Reality



Drones

Spoofing, the emerging threat

GNSS SPOOFING CAPABLE DEVICES EVOLUTION COST

Security

OS-NMA, the unique Galileo

Authentication feature will bring more benefits to IoT

Authentication

 Data level: Navigation Message Authentication Integrated in the E1-B band for OS. Aimed at consumer users and offered for free. Already prototyped and under testing

"Navigation Message
Authentication" is defined as the ability of the system to guarantee to the users that they are utilising non-counterfeit navigation data that comes from the Galileo satellites and not from any other (potentially malicious) source

Characteristics

Contributes to mitigate a well known GNSS vulnerability (spoofing)

Clear differentiator w.r.t. other GNSS available to the civil community

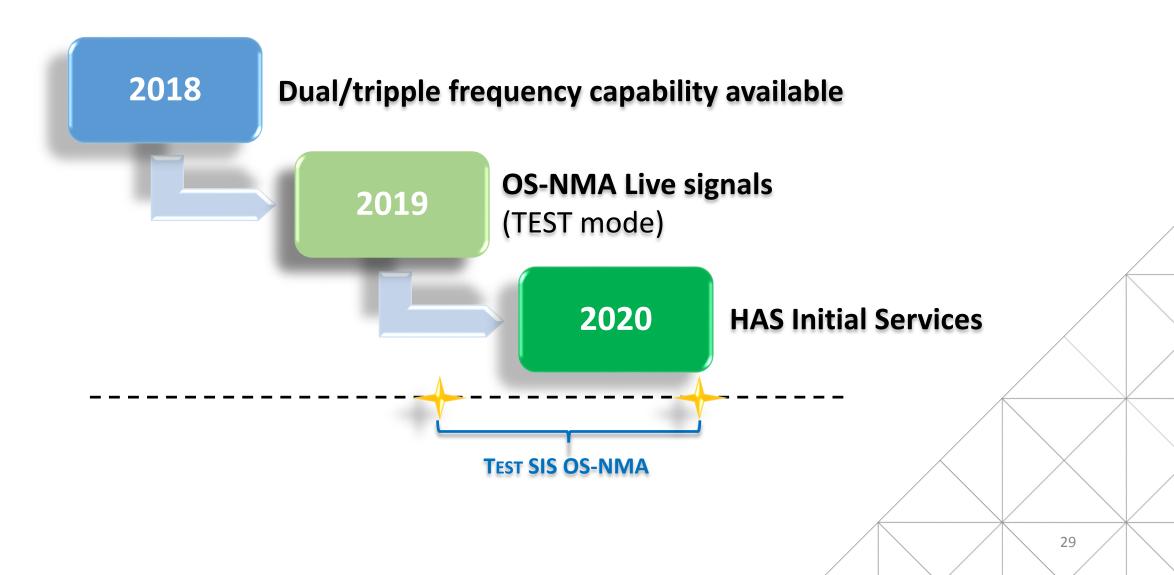
Fully backward compatible. Does not affect users not interested

Disseminated on the first Galileo frequency (E1B)

Open access: asymmetric cryptography. No need to store secret keys in the Rx, just public key

Long-term cryptographically secure

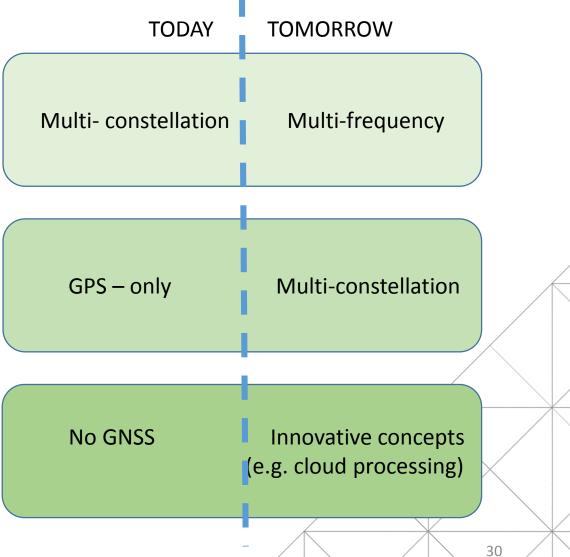
OS-NMA is being prototyped


- Autonomous Driving positioning engine for vehicles (ESCAPE)
- <u>Smart Tachograph</u> OS-NMA enabled user terminal (PATROL)
- Autonomous driving positioning engine for trucks (ProPART)
- Professional grade GNSS technology (FANTASTIC)

Gradual implementation of Galileo new features

Internet of Things segmentation (from GNSS provider perspective)

HIGH END


Lower power consumption and cost constraints (fleet management, drones, smartphones)

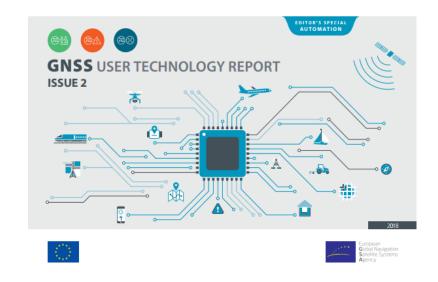
MID RANGE

Medium power consumption and cost constraints (asset tracking, wearables, bike sharing, smart lightning)

LOW END

High power consumption and cost constraints (low value asset management and tracking)

Get the GSA reports on GNSS market and technology to support your planning and decision making



The **GNSS Market Report** is a comprehensive source of knowledge and information on the dynamic, global GNSS market. The report is published every two years, with the latest edition released in 2017

Download for free at

https://www.gsa.europa.eu/ market/market-report

The GNSS User Technology Report, a sister publication to the GSA's GNSS Market Report, is published every two years and takes an indepth look at the latest state-of-the-art GNSS receiver technology

Download for free at

https://www.gsa.europa.eu/europ ean-gnss/gnss-market/gnss-usertechnology-report

Support EU competitive offer: Funding mechanisms promote the development of Galileo within apps and receivers

Aims to foster adoption of EGNSS via content and application development and supports the integration of services provided by these programmes into devices and their commercialisation

Fundamental Elements projects focus on fostering the development of innovative Galileo- and EGNOS-enabled receivers, antennas and chipsets technologies

The new H2020 call is open! H2020-SPACE-EGNSS-2019

Type of Action	Topic	Indicative budget (EUR mln)	Funding rate	
IA	EGNSS applications fostering green, safe and smart mobility	10.00	70% (except for non-profit legal entities, where a rate of 100% applies)	
IA	EGNSS applications fostering digitisation	4.00		
IA	EGNSS applications fostering societal resilience and protecting the environment	4.00		
CSA	EGNSS awareness raising and capacity building	2.00	100%	
TOTAL budget:		20.00		

A combination of EGNSS with other technologies required to make the application(s) work, is also encouraged

Opening: 16 October 2018
Deadline: 05 March 2019

IA: activities aimed at producing plans and arrangements or designs for new, altered or improved products, processes or services

CSA: consisting of accompanying measures such as standardisation, dissemination, awareness-raising and communication, networking, policy dialogues and studies

Linking space to user needs

How to get in touch:

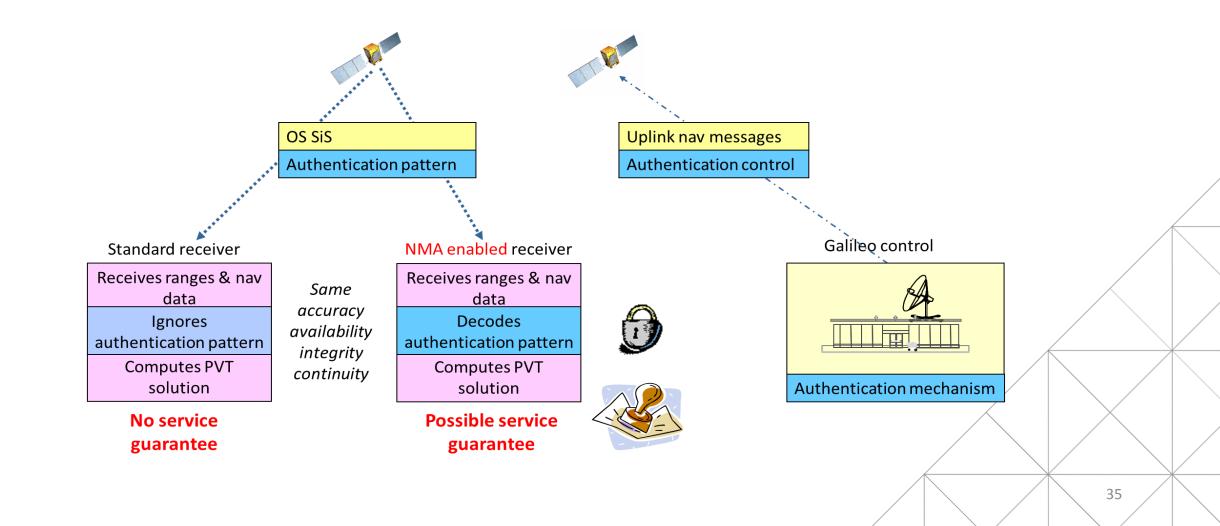
GSA Newsletter

GNSS YouTube Channel

GSA Twitter - @EU GNSS EGNOS Twitter - @EGNOSPortal

European GNSS Agency LinkedIn Page GNSS Market, Research & Development

GNSS Facebook page



GNSS Slideshare Page (presentations)

With OS-NMA, users can verify that signal comes from a Galileo satellite and not from a potentially malicious source

