

Alliance for IoT and Edge Computing Innovation

Webinar • 24 April 2024

Presentation of WG Standardisation reports

IoT and Edge Computing EU funded projects landscape Report R2

High Priority IoT Standardisation Gaps and Relevant SDOs R3

Opening and Welcome

Georgios Karagiannis, AIOTI WG Standardisation Chair (Huawei)

15.00	Opening and Welcome (10 min)	15.50	Presentation of INSTAR Project (10 min)
	Georgios Karagiannis, AIOTI WG Standardisation Co-Chair		Damir Filipovic, AIOTI, INSTAR Project Participant
15.10	Presentation of the IoT and Edge Computing EU funded projects landscape Report R2 (20 min)	16.00	Questions from the audience (15 min)
	Zbigniew Kopertowski (Orange), report editor		Moderated by Georgios Karagiannis, AIOTI WG Standardisation Co-Chair
15.30	Presentation of Report High Priority IoT Standardisation Gaps and	16.15	Wrap up and end of Webinar
	Relevant SDOs R3 (20 min)		Georgios Karagiannis, AIOTI WG Standardisation Co-Chair
	Axel Rennoch (Fraunhofer), report editor		

About AIOTI WG Standardisation

Leadership and Vision

Co-Chair Georgios Karagiannis Huawei

Vision:

To be recognized as a major contributor to the worldwide interoperability, security, privacy and safety of IoT and Edge Computing systems and applications, and particularly for the development of the market in Europe

Deliverables:

https://aioti.eu/standardisation/

Highlights

Relevant facts

95 member organisations

205 participants

Main achievements

Deliverables	Collaborations	Events					
 IoT Landscape Reports 	 Cooperation with SDOs/Alliances to foster 	AIOTI signature event					
 High priority gaps Reports 	co-creation and interworking (MoUs and	 IoT Week – lead standards track 					
 IoT relation and impact on (beyond) 5G Reports 	 SNS Partnership 	 IoT and Edge computing workshops Chariot project webingr 					
 High Level Architecture and IoT Identifier Reports 	Trans Continuum InitiativeStand.ICT - EU OS	 Navigating IoT Architectures and Standards Days Event 					
Semantic Interoperability Joint White Papers	 HLF on European Standardisation 	Edge Computing Forum					
 Ontology Landscape 	 ICT MSP 	ETSI IoT Week					
 Guidance for the Integration of IoT and Edge in Data Spaces 	EGDCone6G	 Policies to support Data Markets EUCpC 					

IEEE IoT World Forum

AIOTI organisation

Horizontal WG

ΑΙῶΤΙ

Focus-Group / Task Force	Lead	Deliverable				
loT Landscape	Georgios Karagiannis (Huawei)					
IoT Landscape maintenance	Z. Kopertowski (Orange)	report published in February and December 2023				
Gap Analysis and recommendations	A. Rennoch (Fraunhofer)	report published in April 2022 and in January 2024				
IoT relation and impact on 5G	Georgios Karagiannis (Huawei)	report published in April and November 2023				
Computing Continuum	Ronald Freund (Fraunhofer)	report published in April 2022				
High Level Architecture for IoT, Edge Computing and Digital Twins	Antonio Kung (Trialog)					
IoT and Edge Computing Reference Architecture	Georgios Karagiannis (Huawei)	report published in December 2020				
Guidance for the Integration of IoT and Edge in Data Spaces	Antonio Kung (Trialog)	report published in September 2022				
Report on IoT and Edge computing architecture in context of Computing Continuum	Antonio Kung (Trialog)	work ongoing				
Report on IoT and Edge computing architecture in context of Digital Twins	Antonio Kung (Trialog)	work ongoing				
Semantic Interoperability	Martin Bauer (NEC Lab), Laura Daniele (TNO)					
Ontology Landscape Report		report published in December 2021				
Ontology Landscape Online		published in March 2023				

Priorities 2024 (I)

IoT & Edge Computing Landscape

- Cooperation with SDOs/Alliances to foster co-creation and interworking.
- New MSP DEI WG on standardisation in support of Digitising European Industry
- Maintain IoT and Edge Computing landscapes
- Recommendations and guidelines on solving protocol and interface gaps needed to support new IoT and Edge Computing features
- Provide Computing Continuum requirements (on IoT and edge computing) and (Optical Communication) enablers
- Provide guidelines on how IoT can become an enabler for 5G (and beyond 5G) and vice versa
- Provide guidelines on how IoT & Edge Computing standardisation can impact the Industry Digitization, and vice versa
- Provide guidelines on how IoT & Edge Computing standardisation can impact the UN SDGs and European Green Deal, and vice versa
- Explore and document the EU funded projects landscape focusing on IoT and Edge computing; (Implementation ion of this action is a report)

High Level Architecture (HLA)

- Recommendations of reference architectures, both for experimentation and deployments within IoT domains and cross IoT domains
- Architecture and interfaces for IoT & Edge Computing Data (Services & Solutions) marketplaces; Guidelines for Data Access and Data Sharing; Guidelines of enhancement of data sharing in support of the Green Deal e.g. GreenData4all, Destination Earth (A European strategy for data Common European Green Deal data spaces)
- Recommendation of an interoperable IoT Identifier space that transcends geographical limits
- Recommendations for a Digital Twin based IoT and Edge Computing reference architecture
- Recommendations for a Computing Continuum based IoT and Edge Computing reference architecture

Semantic Interoperability

- Identification of missing (semantic) interoperability standards and technologies within IoT domains and cross IoT domains and recommendations for solving them. In addition topics related
 to the impact of edge computing on semantic Interoperability will be as well taken into account
- Promoting the availability, findability, use and development of Open Reference Vocabularies and Open Application Programming Interfaces to allow for flexible ad-hoc communication and interaction between different actors within IoT domains and cross - IoT domains
- Landscape of ontologies supporting users in their assessment of the quality and usability of ontologies.
- Investigate the impact of the Twin green and digital transformations on existing semantic interoperability models and ontologies

Presentation of the IoT and Edge Computing EU funded projects landscape Report

Zbigniew Kopertowski, Report Editor (Orange)

Goal and Content of the Report

- Published on 15 December 2023: "IoT and Edge Computing EU funded projects landscape, Release 2.0", <u>Link to Report</u>
- Goal of report:
 - Analysis of the completed and ongoing EU funded projects focusing on IoT and edge computing subjects for:
 - ✓ leverage on existing IoT and edge computing research and innovation challenges in Europe, as well as standardisation activities
 - ✓ provide input to IoT and edge computing standardisation gap analysis activities

Method of collecting information:

- ✓ Using template
- ✓ Analysis of public deliverables of the projects
- ✓ Inputs provided by AIOTI members coming

Table of contents:

Executive Summary

- 1. IoT EU funded projects landscape (34)
 - 1.1 Completed Projects (25)
 - 1.2 Ongoing Projects (9)
- 2. Edge Computing (EC) EU funded projects landscape (27)
 - 2.1 Completed Projects (10)
 - 2.2 Ongoing Projects (17)
- Annex I. Used Template for input collection

- Summary of used template
 - Title of the EU funded Project
 - URL/Reference
 - Abstract
 - Starting and (target) end time of project
 - IoT and/or EC research challenges
 - Expected/achieved activities on "Dissemination and Impact on Standards"

IOT EU funded Completed Projects Landscape (1)

Technology and Marketing Dimensions Vertical and Horizontal Domains

IoT EU funded Completed Projects Landscape (Technology and Marketing Dimensions)

IoT EU funded Completed Projects Landscape (Vertical and Horizontal Domains)

Horizontal/Telecommunication

IOT EU funded Completed Projects Landscape (2)

Standardisation Organisations and Initiatives projects' activities

IoT EU funded Completed Projects Landscape (Standardisation Organisations and Initiatives)

Others: BDVA, 5GPPP, 5G ACIA, 6G-IA, NGMN, GSMA, CEN/CENELEC, StandICT, etc.

Source: AIOTI WG Standardisation – Release 2.0

IOT EU funded Ongoing Projects Landscape (1)

Technology and Marketing Dimensions Vertical and Horizontal Domains

IoT EU funded Ongoing Projects Landscape (Vertical and Horizontal Domains)

Source: AIOTI WG Standardisation - Release 2.0

B2C

IOT EU funded Ongoing Projects Landscape (2)

Standardisation Organisations and Initiatives projects' activities

IoT EU funded Ongoing Projects Landscape (Standardisation Organisations and Initiatives) Open source Open ETSI ISO / IEC IEEE SA AIOTI 3GPP W3C ITU-T IETF StandICT standards AMS **MEMO** assist-iot < EDDIE 2055 assist-iot assist-iot 🕼 nephele **MEMO MEMO** IntellioT **COMMECT** IntellioT COMMECT 2055 COMMECT IntellioT assist-iot : assist-iot COMMECT IntellioT 🕼 nephele 🕼 nephele AMS COMMECT assist-iot IntellioT **MEMO** 1 nephele

Others: BDVA, OneM2M, 5GPPP, 5G ACIA, 6G-IA, NGMN, NIST, CEN/CENELEC, ENISA, etc. Source: AIOTI WG Standardisation – Release 2.0

EC EU funded Completed Projects Landscape (1)

Technology and Marketing Dimensions Vertical and Horizontal Domains

Edge Computing EU funded Completed Projects Landscape (Technology and Marketing Dimensions)

Edge Computing EU funded Completed Projects Landscape (Vertical and Horizontal Domains)

EC EU funded Completed Projects Landscape (2)

Standardisation Organisations and Initiatives projects' activities

Edge Computing EU funded Completed Projects Landscape (Standardisation Organisations and Initiatives)

Others: BDVA, 5GPPP, 6G-IA, NIST, PICMG, etc.

Source: AIOTI WG Standardisation – Release 2.0

EC EU funded Ongoing Projects Landscape (1)

Technology and Marketing Dimensions Vertical and Horizontal Domains

Edge Computing EU funded Ongoing Projects Landscape (Vertical and Horizontal Domains)

EC EU funded Ongoing Projects Landscape (2)

Standardisation Organisations and Initiatives projects' activities

Edge Computing EU funded Ongoing Projects Landscape (Standardisation Organisations and Initiatives)

Others: BDVA, 5GPPP, IRTF, 6G-IA, CEN/CENELEC, StandICT, AI4EU, etc.

Source: AIOTI WG Standardisation – Release 2.0

Open source

Summary

- Goal of this presentation is to promote the key results documented in the "IoT and Edge Computing EU funded projects landscape, Release 2"
- 61 projects included (selected)
 - 34 IoT, 27 Edge Computing
 - 35 completed, 26 ongoing

IoT projects landscape

- **Challenges** in (most effort):
 - System architecture
 - Data security
 - Interoperability
 - Intelligence
- Standardization
 - organizations and initiatives (most popular): ETSI, AIOTI, ISO/IEC, 3GPP, ITU-T, TMF, IEEE SA, IETF, BDVA
 - Activities:
 - Usage of standards
 - Contributions to technical reports
 - Use case specific

Edge Computing projects landscape

- Challenges in (most effort):
 - Platform architecture
 - Cloud-edge-IoT (CEI) computing continuum
 - Al support
 - Security
- Standardization
 - organizations and initiatives (most popular): ETSI, AIOTI, StandICT, ISO/IEC, TMF, BDVA, 3GPP, ITU-T
 - Activities:
 - Usage of standards
 - Contributions to SDO
 - Contributions to technical reports

Next Steps and Discussion

- Updated version of the report "IoT and Edge Computing EU funded projects landscape, Release 3" is planned with:
 - New projects added
 - New technical challenges
 - Updated analysis of the standardisation activities
- Questions to the audience
 - Is this report useful for your community?
 - ✓ If yes, we can have one-to-one meetings to discuss details on topics interesting for your community
 - Are there any IoT and Edge Computing EU funded projects known to your community that need to be included in a subsequent Release?
 - ✓ If yes, we can have one-to-one meetings to discuss the way on how this input can be provided to AIOTI
- Open Discussion

Presentation of the Report High Priority IoT Standardisation Gaps and Relevant SDOs R3

Axel Rennoch, Report Editor (Fraunhofer)

IoT & Edge Computing Landscape Focus Group

WP 1: IoT & Edge Computing Landscape

- Cooperation with SDOs/Alliances to foster co-creation and interworking
- Maintain IoT and Edge Computing landscapes. (focus on edge computing landscape)

 <u>Recommendations and guidelines</u> on solving protocol and interface gaps needed to support new IoT and Edge Computing features within IoT domains and cross-IoT domains.

<u>Promote</u> particularly the uptake of IoT & Edge Computing <u>standards</u> in public procurement to avoid lock-in

- Provide Computing Continuum requirements (on IoT and edge computing) and (Optical Communication) enablers
- Provide guidelines on how IoT can become an enabler for 5G (and beyond 5G) and vice versa. How IoT standards accommodate the use of these converged technologies, such as 5G, IoT/IIoT, Artificial Intelligence (AI), robotics, cloud and edge computing and as well automation, in vertical and cross-vertical applications
- Provide guidelines on how IoT & Edge Computing standardisation can impact the Industry Digitization, and vice versa
- Provide guidelines on how IoT & Edge Computing standardisation can impact the UN SDGs and European Green Deal, and vice versa

High Priority IoT and Edge Computing Standardisation Gaps and Relevant SDOs

High Priority <u>IoT</u> Standardisation Gaps and Relevant SDOs Release 2.0 January 2020:

https://aioti.eu/wp-content/uploads/2020/01/AIOTI-WG3-High-Priority-Gaps-v2.0-200128-Final.pdf

High Priority Edge Computing Standardisation Gaps and Relevant SDOs, April 2022:

https://aioti.eu/wp-content/uploads/2022/04/AIOTI-High-Priority-Edge-Computing-Gaps-Final.pdf

High Priority IoT Standardisation Gaps and Relevant SDOs – Goals of the Report

Publication of High Priority IoT Standardisation Gaps and Relevant SDOs, Release 3.0 report:

https://aioti.eu/wp-content/uploads/2024/01/AIOTI-High-Priority-IoT-Gaps-R3-Final.pdf

Goal of report:

• This report presents an approach for the <u>definition and identification of key IoT standardisation gaps</u> in several initiatives

(1) Method of <u>collecting</u> information on <u>loT challenges</u>:

- Using pre-defined template to collect IoT challenges
- Input provided discussed and approved by AIOTI members

(2) Method of *identifying* IoT Standardisation gaps to be covered by SDOs:

- Identify <u>which</u> of found IoT challenges can be considered IoT <u>Standardisation challenges</u>
- Investigate how many <u>SDOs and SDO specifications</u> are <u>covering/working</u> out each IoT Standardisation challenge
- Analyse and <u>recommend</u> which IoT <u>Standardisation challenge</u> is to be seen as a gap and should be covered by SDOs

AI©TI

Preparations

Selection of IoT computing challenges

- 1. Identification of European <u>IoT research projects</u>: 14 EU projects
 - Collection of related project research challenges
 - Using a Challenge description template
- 2. IoT challenges identified from AIOTI members, literature studies (e.g. by AIOTI and ETSI reports)
 - AIOTI "High Priority IoT Standardisation Gaps and Relevant SDOs Release 2.0"
 - ETSI STF 505 document ETSI TR 103.375
- 3. IoT challenges collected from AIOTI SRIA
 - Strategic Research and Innovation Agenda (https://aioti.eu/aioti-sria-advancing-next-generation-iot-and-edge-computing-research-and-innovation/)

Identification of relevant SDOs and related specifications/reports

- 1. Use of StandICT excel sheets
- 2. Updated with recent specifications/reports

AI©TI

Template used for IoT research/standardisation requirement

- <u>Title</u> of IoT research/standardisation requirement
- Description of IoT research/standardisation requirement
 - Motivation
 - Description
 - Type of requirement
 - Functional (real-time communication, scalable communication, etc.)
 - non-functional (performance, flexibility, security, etc.)
- Application/Industry domain:
 - Horizontal, Health, Mobility, Energy, Buildings, Agriculture, Manufacturing, Urban Society, etc.

Samples of IoT challenges (from 37 challenges)

1. Group (from EU projects): 14 challenges

- IoT-based data analysis to **improve farming** (project DEMETER)
- Security By Design IoT Development and Certificate Framework with Front-end Access Control (project IOTAC)
- Smart and Healthy Ageing through People Engaging in Supportive Systems (project SHAPES)

2. Group (from AIOTI members and literature): 8 challenges

- Semantic interoperability of IoT data spaces (from AIOTI report "Guidance for the Integration of IoT and Edge Computing in Data Spaces")
- ICT for CO2 Reduction Methodologies (from AIOTI report "IoT and Edge Computing Carbon Footprint Measurement Methodology")

3. Group (from AIOTI SRIA): 15 challenges

- Energy-Efficient Intelligent IoT and Edge Computing Systems
- IoT Digital Twins, Modelling and Simulation Environments
- Internet of Things Senses (senses of sight, hearing, taste, smell, and touch)

Selection of SDOs and SSOs

Standards Developing Organisations (SDOs),

Standards Setting Organisations (SSOs)

like Industrial Consortia and Open-Source Software (**OSS**) initiatives

Based on:

- The AIOTI "IoT LSP Standard Framework Concepts R3" report and
- the EUOS "Landscape of Internet of Things (IoT) Standards" report

Key SDOs:

- ETSI, 3GPP, oneM2M,
- CEN/CENELEC,
- IEC, ISO/IEC JTC1, ITU-T,
- W3C, IETF, IEEE

Details: identification of standardization gaps

- 1. Check for each SDO all specifications addressing the IoT challenge, e.g.
 - ETSI: check 88 specifications wrt. 37 challenges
 - ITU-T: check 65 specifications wrt. 37 challenges
 - ISO/IEC: check 79 specifications wrt. 37 challenges

	٠

1	Contributor	REF_ID_ init	Source	Sour	Title_Full	Title_Merged	Abstract/Scope	Published	Webpage_URL
2	Michelle W	750	ETSI	ETSI	Smart M2M; Smart Escalators IoT Syst	ETSI TS 103 849 Smart M2M; Smart Es	The scope of this standard	Under development	Not available yet
3	Marco, Georgios, ITU-T S	59	ITU-T	ITU-	Sustainable and intelligent building ser	ITU-T L.1370 (11/2018) Sustainable and	This recommendation sets	2018-11	https://handle.itu.int/11.1002
4	Maria Ines Robles	302	IETF	RFC	7 Applicability Statement: The Use of the	IETF RFC7733 Applicability Statement:	The purpose of this docun	2016-02	https://datatracker.ietf.org/do
5	Michelle W	201	ETSI	ETSI	SmartM2M; IoT LSP use cases and star	ETSI TR 103 376 SmartM2M; IoT LSP us	The scope of this documer	2016-10	http://www.etsi.org/deliver/et
6	Maria Ines Robles	259	IETF	draf	t RAW use-cases	IETF draft-ietf-raw-use-cases RAW use-	This document presents w	2022-02	https://datatracker.ietf.org/do
7	Maria Ines Robles	333	IETF	RFC	Deterministic Networking Use Cases	IETF RFC 8578 Deterministic Networkin	This document presents u	2019-01	https://datatracker.ietf.org/do
8	IOT-EDGE-0096 Noleen C	630	ISO/IEC	ISO/	Information technology - Internet of the	ISO/IEC TR 22417:2017 Information tee	ISO/IEC TR 22417:2017(E)	2017-11	https://www.iso.org/standard,
9	IOT-EDGE-0046	137	oneM2M	TR-C	oneM2M - Use Case collection	oneM2M TR-0001-V2.4.1 oneM2M - U	The present document inc	2016-08	https://www.onem2m.org/ima
10	George Suciu	233	5GAA		Tele-operated Driving Use Cases, Syster	5GAA Tele-operated Driving Use Cases,	, The evolution of driving au	2021-12	https://5gaa.org/news/tele-op
11	Maria Ines Robles	273	IETF	RFC	5 Building Automation Routing Requirem	IETF RFC5867 Building Automation Rou	The Routing Over Low-Pov	2010-06	https://datatracker.ietf.org/do
12	Ray Walshe	781	HL7 International	HL7	HL7 Version 2 Messaging Standard	HL7 International HL7 V2.9 HL7 Version	Communications/Network	2019-12	http://www.hl7.org/implemen
13	Maria Ines Robles	272	IETF	RFC	5 Home Automation Routing Requireme	IETF RFC5826 Home Automation Routi	This document presents re	2010-04	https://datatracker.ietf.org/do
14	George Suciu	462	3GPP	3GP	Study on Narrow-Band Internet of Thin	3GPP TR 36.763 V17.0.0 Study on Nar	The objectives for this doc	2021-06	https://portal.3gpp.org/deskto
15	George Suciu	551	3GPP	3GP	Study on Narrow-Band Internet of Thin	3GPP TR 36.763 V17.0.0 Study on Nar	The objectives for this doc	2021-06	https://www.3gpp.org/news-e
16	George Suciu	550	3GPP	3GP	Evolved Universal Terrestrial Radio Acc	3GPP TR 36.802 V13.0.0 Evolved Univ	The present document sur	2016-06	https://www.3gpp.org/ftp/Spe
17	George Suciu	3	5G PPP	5G F	5G Trials for Cooperative, Connected a	5G PPP 5G PPP H2020 ICT-18-2018 5G	The white paper focuses o	2020-10	https://5g-ppp.eu/wp-content
18	Georgios, AIOTI	4	AIOTI		Identifiers in Internet of Things (IoT)	AIOTI Identifiers in Internet of Things (Identification is a major to	2018-02	https://aioti.eu/wp-content/uj
19	Noleen Campbell	73	bloTope	bloT	Prototype of Platform Integration using	bioTope D3.5 Prototype of Platform Int	This document is a part of	2017-06	https://st11.ning.com/topolog
20	Noleen Campbell	87	bloTope	bloT	Information Source Publication and Co	bioTope D3.6 V2.0 Information Source	The main objective of this	2018-01	https://storage.ning.com/topc
21	Noleen Campbell	72	bloTope	bloT	Service Composition Framework	bioTope D5.2 V1.0 Service Compositior	This document discusses t	2017-01	https://st11.ning.com/topolog
22	Noleen Campbell	88	bloTope	bloT	Service Composition Framework	bioTope D5.5 V2.0 Service Compositior	This document presents a	2017-12	https://storage.ning.com/topc
23	Noleen Campbell	485	CEN	EN 1	Communication systems for meters - P	CEN EN 13757-3:2018 Communication	This draft European Stand	2018-10	https://standards.cencenelec.e
24	Noleen Campbell	482	CEN	EN 1	Communication systems for meters - P	CEN EN 13757-4:2019 Communication	This European Standard sp	2019-11	https://standards.cencenelec.e
25	Noleen Campbell	480	CEN	EN 1	Communication systems for meters - P	CEN EN 13757-6:2015 Communication	This European Standard sp	2016-06	https://standards.cencenelec.e
26	Noleen Campbell	486	CEN	EN 1	Communication systems for meters - P	CEN EN 13757-7:2018 Communication	This draft European Stand	2018-10	https://standards.cencenelec.e
27	Noleen Campbell	481	CEN	EN 1	Heat meters - Part 3: Data exchange an	CEN EN 1434-3:2015 Heat meters - Par	This European Standard sp	2016-06	https://standards.cencenelec.e
28	Noleen Campbell	478	CEN	EN 1	Communication systems for meters - V	CEN EN 16836-2:2016 Communication	This European Standard sp	2017-05	https://standards.cencenelec.e
29	Noleen Campbell	479	CEN	EN 1	Communication systems for meters - V	CEN EN 16836-3:2016 Communication	This European Standard sp	2017-05	https://standards.cencenelec.e
30	Noleen Campbell	78	CEN	CEN	Communication system for meters - Ad	CEN/TR 17167:2018 Communication s	This Technical Report cont	2018-04	https://standards.cencenelec.e
									and the second

Details: identification of standardization gaps

- 1. Check for each SDO all specifications addressing the IoT challenge, e.g.
 - ETSI: check 88 specifications wrt. 37 challenges
 - ITU-T: check 65 specifications wrt. 37 challenges
 - ISO/IEC: check 79 specifications wrt. 37 challenges
- 2. Check for all 37 challenges
 - <u>Number</u> of <u>SDO</u> addressing the IoT challenges (with minimum of one specification)
 - <u>Number</u> of SDO <u>specifications/reports</u> addressing the IoT challenges

•

Number of SDOs and specifications covering / working out an AIOTI IoT identified challenge

IoT Challenge/SDO

Depending on the level of the intensity that an IoT standardisation challenge is covered/worked out by an SDO, **three categories can be distinguished**:

- <u>GREEN:</u> High intensively covered standardisation gap in SDOs (high #SDOs >= 4 AND high #specs >= 8)
- YELLOW: Medium intensively covered standardisation gap in SDOs (high #SDOs >= 4 AND low #specs < 8) OR low #SDOs < 4 AND high #specs >= 8)
- <u>RED:</u> Low intensively covered standardisation gap in SDOs (low #SDOs < 4 AND low #specs < 8)

Number of SDOs and Specs working on an IoT challenge

IoT Challenge/SDO IoT Challenge/Specs

15 IoT challenges covered/worked out by SDOs (green)

#chal	l Description	IEC	ETSI	3GPP	ISO/IEC	EN/CENELEC	IEEE	ITU	W3C	IETF	OneM2M	#SDO	#Specs
2.1.1	Challenges reported in DataPorts: A Data Platform for the Cognitive Ports of the Future	41	2		31	37	1		5	24		7	141
2.1.2	Challenges reported in DEMETER: IoT-based data analysis to improve farming				31			1	4		1	4	37
2.1.3	Challenges reported in IoTAC: Security By Design IoT Development and Certificate Framework with Front-end Access Control	10	5		8	3			1	27		6	54
2.1.4	Challenges reported in IoT-NGIN: Next Generation IoT as part of Next Generation Internet				3		1	3	1	25	6	6	39
2.1.5	Challenges reported in SHAPES: Smart and Healthy Ageing through People Engaging in Supportive Systems							1			2	2	3
2.1.6	Challenges reported in ASSIST-IoT: Architecture for Scalable, Self-*, human-centric, Intelligent, Secure, and Tactile next generation IoT	9	5		3	1	1	2	4	21	1	9	47
2.1.7	Challenges reported in IM-TWIN: from Intrinsic Motivations to Transitional Wearable INtelligent companions for autism spectrum disorder				3			1				2	4
2.1.8	Challenges reported in GATEKEEPER: Smart Living Homes – Whole Interventions Demonstrator For People At Health And Social Risks		1					10			2	3	13
2.1.9	Challenges reported in CHARM: Challenging environments tolerant Smart systems for IoT and AI					22	1	1			1	4	25
2.1.10	Challenges reported in ATLAS: Agricultural Interoperability and Analysis System							1			1	2	2
2.1.11	Challenges reported in TERMINET: nexT gEneRation sMart INterconnectEd ioT		5		3	6					1	4	15
2.1.12	Challenges reported in Hexa-X: A flagship for B5G/6G vision and intelligent fabric of technology enablers connecting human,			3			4		2	4	5	5	18
2.1.13	Challenges reported in InterConnect: Interoperable Solutions Connecting Smart Homes, Buildings and Grids		3		1		3		4		9	5	20
2.1.14	Challenges reported in IntellIoT: Intelligent, distributed, human-centered and trustworthy IoT environments		1		2	1		4			1	5	9
2.2.1	Green machine learning for the IoT											0	0
2.2.2	Software Containers at the Edge		3									1	3
2.2.3	Semantic interoperability of IoT data spaces	41	2		8	20	1	1	2	15	8	9	98
2.2.4	Digital Twins – overall		1		2							2	3
2.2.5	Heterogeneous vocabularies and ontologies in Digital Twins				4							1	4
2.2.6	Quality of metadata in Digital Twins				2							1	2
2.2.7	IoT Swarms											0	0
2.2.8	Digital for Green	1			2	5		8		26		5	42
2.3.1	IoT and Edge Computing Granularity		1								2	2	3
2.3.2	IoT Edge and X-Continuum Paradigm											0	0
2.3.3	Intelligent Connectivity	11								87		2	98
2.3.4	Energy-Efficient Intelligent IoT and Edge Computing Systems							1			1	2	2
2.3.5	Heterogeneous Cognitive Edge IoT Mesh											0	0
2.3.6	IoT Digital Twins, Modelling and Simulation Environments		1		1							2	2
2.3.7	Internet of Things Senses											0	0
2.3.8	Decentralised and Distributed edge IoT Systems	20		3		7				99		4	129
2.3.9	Federated Learning, Artificial Intelligence technologies and learning for edge IoT Systems										2	1	2
2.3.10	Operating Systems and Orchestration Concepts for edge IoT Systems											0	0
2.3.11	Dynamic Programming Tools and Environments for Decentralised and Distributed IoT Systems							1	2			2	3
2.3.12	Heterogeneous Edge IoT Systems Integration		1								7	2	3
2.3.13	Edge IoT sectorial and Cross-Sectorial Open Platforms										3	1	3
2.3.14	IoT Verification, Validation and Testing (VV&T) Methods	17	11			2		16		25	2	6	73
2.3.15	IoT Trustworthiness and Edge Computing Systems Dependability	13	11		3					26	8	5	61

Recommendations (red and yellow)

Four IoT challenges need more research before being standardised:

- 2.2.1 <u>Green machine learning</u> for the IoT
- 2.2.7 <u>Iot Swarms</u>
- 2.3.2 IoT Edge and X-<u>Continuum</u> Paradigm
- 2.3.5 Heterogeneous Cognitive Edge IoT <u>Mesh</u>

Two IoT challenges marked as <u>medium intensively covered</u> (require lower level of standardisation work):

- 2.1.8 Challenges reported in GATEKEEPER: <u>Smart Living Homes</u> Whole Interventions Demonstrator For People At Health And Social Risks
- 2.3.3 Intelligent <u>Connectivity</u>

16 (!) IoT challenges low intensively covered (require highest level of standardisation work):

- 2.1.5 Smart and <u>Healthy Ageing</u> through People Engaging in Supportive Systems
- 2.1.7 From Intrinsic Motivations to Transitional Wearable INtelligent
 <u>Companions for autism</u> spectrum disorder
- 2.1.10 <u>Agricultural Interoperability</u> and Analysis System
- 2.2.2 <u>Software Containers</u> at the Edge
- 2.2.4 <u>Digital Twins</u> overall
- 2.2.5 Heterogeneous vocabularies and ontologies in Digital Twins
- 2.2.6 Quality of *metadata* in Digital Twins
- 2.3.1 IoT and Edge Computing <u>Granularity</u>
- 2.3.4 <u>Energy-Efficient</u> Intelligent IoT and Edge Computing Systems
- 2.3.6 IoT Digital Twins, Modelling and Simulation <u>Environments</u>
- 2.3.7 Internet of Things <u>Senses</u>
- 2.3.9 Federated <u>Learning</u>, Artificial Intelligence technologies and learning for edge IoT Systems
- 2.3.10 Operating Systems and <u>Orchestration Concepts</u> for edge IoT Systems
- 2.3.11 Dynamic <u>Programming Tools</u> and Environments for Decentralised and Distributed IoT Systems
- 2.3.12 Heterogeneous Edge IoT Systems Integration
- 2.3.13 Edge IoT sectorial and Cross-Sectorial <u>Open Platforms</u>

Next Steps

 Goal of this presentation is to promote the key results documented in the "High Priority IoT Standardisation Gaps and Relevant SDOs, R3"

Questions to the audience:

- Is this report useful for your community?
- Are there any SDO/Alliance/OSS initiatives working on IoT known to your community that need to be included in a subsequent Release?

• Next meeting (joint meeting AIOTI & Stand.ICT/EUOS): 3rd May 2024

- Update of Edge and IoT "gaps" reports
- Open Discussion

Presentation of INSTAR Project

Damir Filipovic, AIOTI, INSTAR Project Participant

Supporting the implementation of the Digital Partnerships and the EU-US TTC through international common ICT Standards

Geographical scope

Technological scope

Key actions

- Common vision & roadmap with like-minded partners to promote ICT standards in the target foundational technologies internationally
- Effective stakeholder engagement across existing and new communities
- Studies and analyses on ICT standardisation in key HE technologies
- Monitoring effective implementation of trade agreements

Consortium

• BluSpecs (coordinator), Fraunhofer, Fortiss, AIOTI, Trialog, TU Delft, Trust-IT, COMMpla, NCSRD, AIT

Start: January 2024	Duration: 30 months
Budget: €1,500,000	Learn more <u>here</u> .

Scope of the Task Forces

TF1 - AI

- Secure, trustworthy and ethical development and use of Al systems (ML algorithms, neural networks, analytics, autonomous systems)
- Al Act, ETSI's Operational Coordination Group on Al (OCG Al)

TF2 – Cybersec-eID

- Cybersecurity & electronic identification in industries like healthcare, manufacturing, financial services, energy, automotive
- European Cyber Resilience Act (CRA)

TF3 – Data

- Data quality, syntactic, semantic and pragmatic characteristics of data (ISO 8000-1)
- Standards impact on policy & regulation, investment & innovation, cross-industry scenarios

TF4 – IoT Edge

Cloud, Edge (near vs. far edge), IoT in smart manufacturing, precision agriculture, mobility, energy grids, smart cities, healthcare etc.

TF5 – 5G+

- Convergence of communications, sensing, sustainable services & AI
- Human-centric, cognitive network of networks system

TF6 – Quantum

- Quantum computing, communication, sensing and cryptography, as well as post-quantum cryptography techniques
- Specific focus on technologies that can be integrated into European infrastructure and interoperability aspects

Relevant standards our TFs will address are listed in our High-Level Standardisation Framework (to be shared upon request).

Task Forces

Questions from the Audience

Moderated by: Georgios Karagiannis, AIOTI WG Standardisation Co-Chair

Wrap up and end of the Workshop

Georgios Karagiannis, AIOTI WG Standardisation Co-Chair

Thank you for listening

Any questions? You can find us at <u>@AIOTI_EU</u> or email <u>sg@aioti.eu</u>

