

Alliance for IoT and Edge Computing Innovation

Online • 8 May 2024

Presentation of the Report on DLT-IoT-AI Technological Convergence

Agenda

15:00h Opening and Welcome
 Damir Filipovic, AIOTI Secretary General
 Introduction of the AIOTI FG DLT & Web3
 Tom De Block, AIOTI FG DLT & Web3 Chair

15.10h Presentation of the Report on DLT-IoT Technological Convergence (20 min) Alfredo Favenza, AIOTI FG DLT & Web3 Co-Chair, Fondazione LINKS Silvio Meneguzzo, PhD in Blockchain & DLT, University of Turin – Fondazione LINKS

15.30hUse Case presentation Examples (20 min)Konstantinos Ntafloukas, INLECOM

15.50h Questions and open discussions (10 min)

16.00hWrap-up and end of WebinarTom De Block, AIOTI FG DLT & Web3 Chair

About AIOTI FG DLT & Web3

Focus Group DLT and Web3

Chair Tom De Block Nearcom

Co-Chair Alfredo Favenza Fondazione LINKS

- Vision: To represent the DLT aka 'Blockchain' enabling technology. Opening new business models that will allow IoT infrastructures to become trustful and sustainable
- Scope: To bring knowledge and awareness, starting with AIOTI verticals. To assist members to work towards deployments

Highlights

Relevant facts		
54 member organisations		
71 participants		
Main achievements		
Deliverables	Collaborations	Events

- Updated AIOTI Testbeds catalogue with over 60 testbeds
- Updated AIOTI Testbeds ٠ methodology

- Innovation Ecosystems
- INATBA •
- CCC •

•

- Webinar promoting convergence ٠ paper
- AIOTI Signature Event 2023 ٠
- Two successful hackathons •

- DLT PET methodology •
- Report on DLT-IoT Technological ٠ Convergence R2

Introduction and Overview of the Report

Alfredo Favenza AIOTI FG DLT & Web3 Co-Chair, Fondazione LINKS

Background

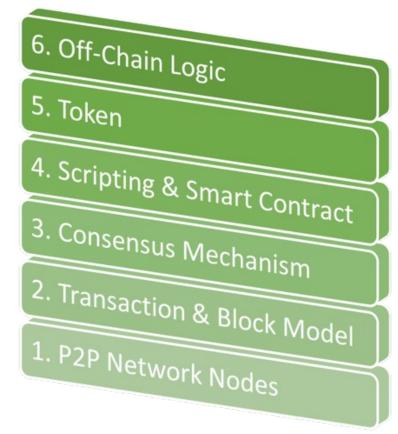
- In 2022 AIOTI released the «Report on DLT-IoT Convergence", led by LINKS Foundation with the collaboration of members from the AIOTI DLT Interest Group including Nearcom, Vicomtech, Nydor System Technologies, Verses, BovLabs, VizLore Labs, Blue Future Organisation, BEIA)
- 2023. The AIOTI established a roadmap for the evolution of the Technology Convergence Topic to extend the analysis to the opportunity lying at the intersection of three technology stack, IoT, DLT and AI.
- By 2024, the AIOTI unveiled the "Report on DLT-IoT-AI Convergence." This effort, continued under the leadership of the LINKS Foundation, emphasized the significant potential for new services and applications. These innovations aim to fully leverage the combined capabilities of these three transformative technologies.

Webinar's Objectives

- Introducing the three-technology stack, including IoT, DLT and the new AI stack.
- Explore areas and topics of convergence lying at the bilateral intersection of IoT-DLT and AI-DLT stacks through the convergence matrix.
- Explore the trilateral intersections between IoT-DLT-AI stacks through the convergence prism, to discover promising areas and topics of convergence where DLT IoT and AI can help solving respective challenges.

Technology Stacks

Silvio Meneguzzo, PhD in Blockchain & DLT, University of Turin – Fondazione LINKS


IoT technology stack

- Sensors and Actuators. Devices with analogue or digital interfaces that detect or ac upon physical conditions. Typically, these sensors are connected through various bu technologies like I2C, RS232, and SPI to facilitate data transmission
- Hub Device. A central device that collects data from sensors and actuators, creatin a bridge to the IoT Gateway. It includes two bidirectional communication interface one for sensors and another wireless interface for connectivity with the IoT Gateway.
- Gateway. Serves as the intermediary that connects devices on the field (like in home or factories) to cloud-based systems where data is stored and processed. It suppor local processing and storage capabilities, providing a crucial link for both online an offline services.
- Computation Servers. Dedicated systems designed to process large datasets an perform complex computations, such as machine learning algorithms. These serve are usually part of cloud platforms and communicate through TCP/IP protocols.
- Services. This layer manages the interaction between computation servers and user facilitating access to processed data through web technologies and mobile devic visualization. It ensures quality of service and considers the temporal validity of data.

DLT technology stack

- P2P Network of Nodes. A decentralized network where peers with equal status maintain and communicate a ledger copy via the internet.
- Transaction & Block Models. Data structures within the distributed ledger; a secure chain of blocks containing transactions.
- **Consensus Mechanism.** Protocol ensuring rights and communication for verification, consensus, and authentication within the network.
- Scripting & Smart Contract (On-chain Logic). Code within the ledger for executing transactions and managing digital assets through smart contracts.
- **Token.** Digital representations of assets, either fungible or non-fungible, used for company shares or voting power.
- Off-chain Logic. Data and computations conducted outside the chain, using offchain storage for privacy and on-chain for public data; oracles link external information to the ledger.

AI technology stack

- Data Infrastructure. Consists of the hardware resources, both physical and virtualized, used for storing and processing data, such as Hadoop systems, and computing resources like VMs, CPUs, and GPUs.
- Data Fusion. Software tools that interact with storage and processing resources to perform tasks like cleaning and labelling raw data, ensuring the preparation of high-quality datasets for machine learning models.
- Algorithms and Models. Comprise the tools and libraries used to train models on datasets, involving feature selection and various training methodologies like supervised and unsupervised learning, with tools such as TensorFlow and Scikitlearn.
- Agents and services. Refer to the applications that use model outcomes to conduct data analysis tasks including natural language processing, image processing, and various prediction and classification activities.

Convergence Matrix

Silvio Meneguzzo, PhD in Blockchain & DLT, University of Turin – Fondazione LINKS

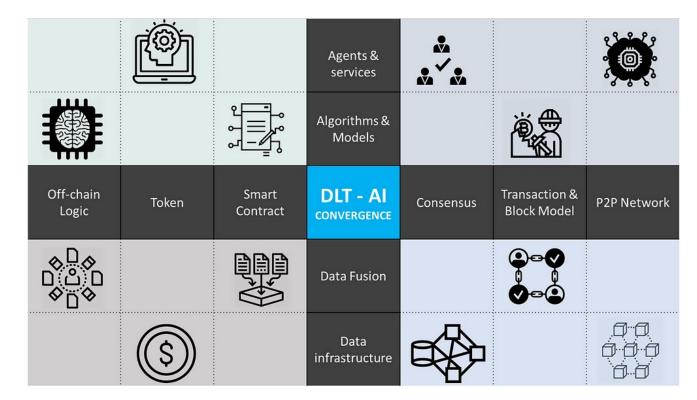
DLT-IoT Convergence Matrix

- Report on DLT-IoT Convergence (AIOTI, 2022)
- Highlights the possible areas and topics of convergence lying at the intersection of the building blocks of the DLT and the IoT stacks.

			Services			
			Computation Servers			
Off-chain Logic	Token	Smart Contract	DLT - IOT convergence	Consensus	Transaction & Block Model	P2P Network
			Gateway Brokers			
			Hub Devices			
			Sensors & Actuators			

DLT-IoT Convergence Areas

- Decentralization
- Interoperability
- Scalability
- Secure Data Exchange
- IoT network security and Identity management
- Autonomous M2M interaction
- Data monetization
- Micro-payments
- Voting & Negotiation


	Data Monetization		Services		Micro- payments	
			Computation Servers		Secure Data Exchange	Decentralization
Off-chain Logic	Token	Smart Contract	DLT - IOT CONVERGENCE	Consensus	Transactions & block model	P2P Network
	Securing Access	loT Network Management			Secure Data	
	management with access token	Securing IoT with fingerprinting	Gateway Brokers		Exchange	
Scalability	Autonomous identity	loT network Management		Decentralization	Scalability	Scalability
		Autonomous Identity Management	Hub Devices	Hub Devices Interoperability		
Interoperability		Autonomous M2M interaction			Secure Data	Decentralization
		Securing IoT with fingerprinting			Exchange	
		Automated and Secure Firmware update	Sensors & Actuators		Automated and secure Firmware update	Decentralization

Ref: «Report on DLT-IoT Convergence», AITOI, 2022

ΑΙ©ΤΙ

DLT-AI Convergence Matrix

 Highlights the possible areas and topics of convergence lying at the intersection of the building blocks of the DLT and the AI stacks.

DLT-AI Convergence Areas

- Al models sharing incentives
- On-chain Al
- Data accountability & data provenance
- Remote attestation on Trusted Execution Environments
- Computational integrity
- DLT-based federated learning for Al models computation
- Data markets and data monetization
- Al Pipeline explainability, traceability and audibility
- Staking-based data sharing
- Distributed data storage
- Al models ownership
- Proof-of-Useful-Work

Automated referee and governance		Agent-based Smart Contract Security Al Oracles	Agents & services	Reinforced Selfish Mining			
Local Al models computation (DLT-FL)	Secure Game Theory	Al-based Static Source Code Analysis Al-aided development		Automated referee and governance		Al-based Static Source Code Analysis	
	Al model	DLT Fairness On-chain Al	Algorithms & models	Al-based Static Source Code Analysis	Al-based Static Source Code Analysis		
Remote Attestation	note sharing	Computation integrity Explainable AI		Proof-of- Useful-Work		Local AI models computation	
		Al models ownership		Proof-of- Useful-Work		(DLT-FL)	
Off-chain Logic	Token	Smart Contract	DLT AI Convergence	Consensus	Transactions & block model	P2P Network	
		Data Accountability					
		Data provenance	Data Fusion				
Distributed data storage	Staking-based data sharing Data Monetization	Data Markets	Data infrastructure			Distributed data storage	
				AI -> DLT	DL	.T -> AI	

ΑΙ©ΤΙ

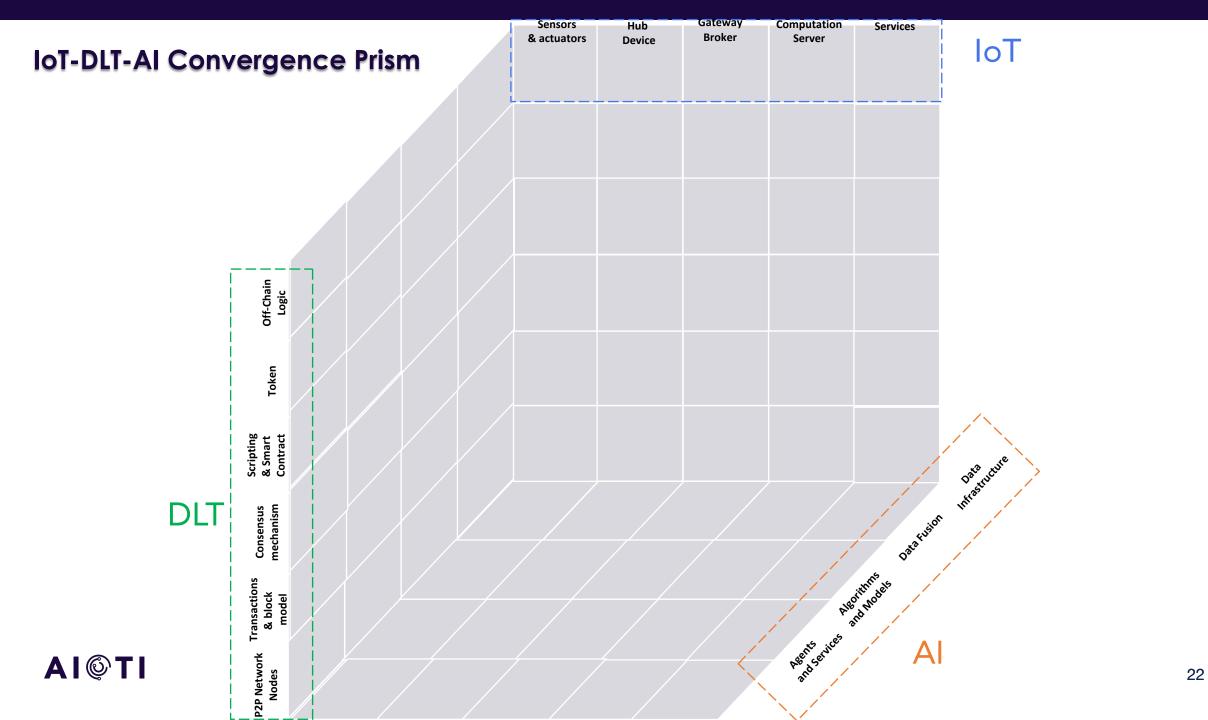
DLT-AI Convergence Areas

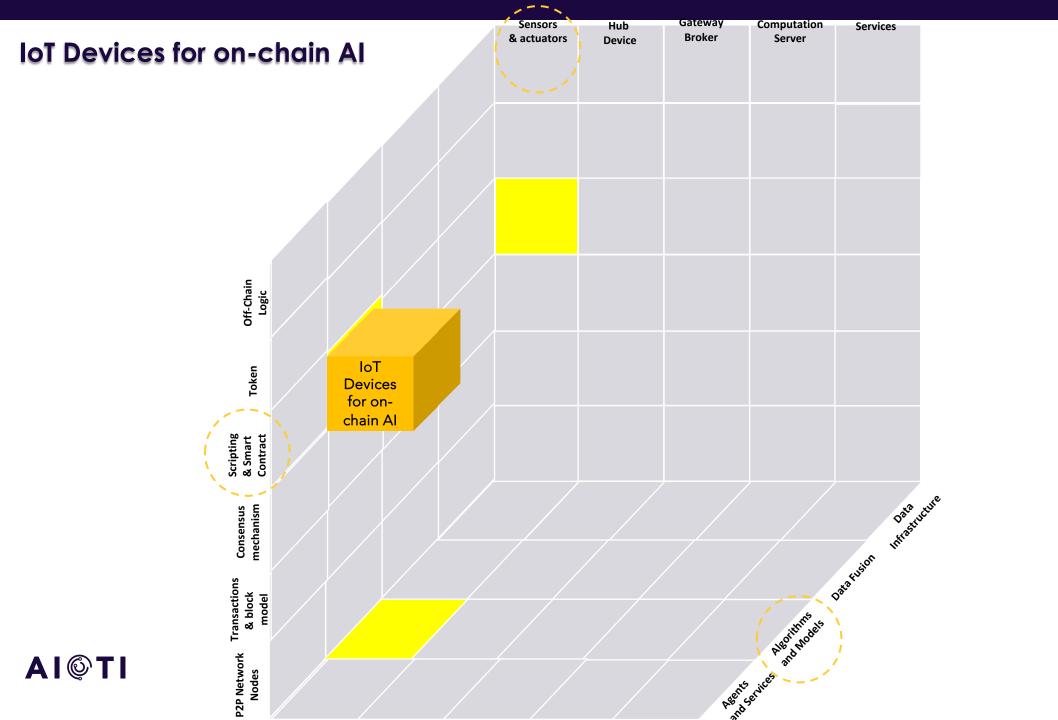
- AI-based Static Source Code Analysis
- Automated Referee and Governance
- Proof-of-Useful-Work
- Al-Aided Development
- DLT Fairness
- Secure Game Theory
- Reinforced Selfish Mining
- Agent-based Smart Contract Security
- Al Oracles

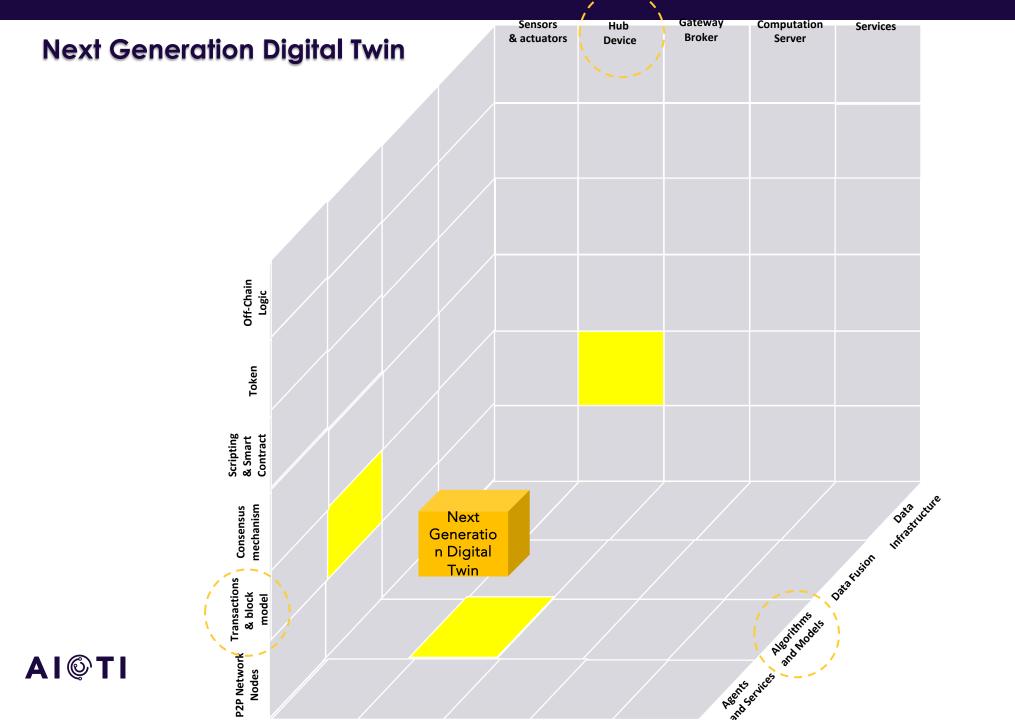
Automated referee and governance		Agent-based Smart Contract Security Al Oracles	Agents & services	Reinforced Selfish Mining		
Local AI models computation (DLT-FL)	Secure Game Theory	Al-based Static Source Code Analysis Al-aided development		Automated referee and governance		Al-based Static Source Code Analysis
		DLT Fairness On-chain Al	Algorithms & models	Al-based Static Source	Al-based Static Source	
	Al model	Computation	mouers	Code Analysis	Code Analysis	Local AI
Remote	sharing incentives	integrity		Proof-of- Useful-Work		models
Attestation	incentives	Explainable AI		Proof-of-		computation (DLT-FL)
		Al models ownership		Useful-Work		
Off-chain Logic	Token	Smart Contract	DLT AI Convergence	Consensus	Transactions & block model	P2P Network
		Data Accountability				
		Data provenance	Data Fusion			
Distributed	Staking-based data sharing		Data			Distributed
data storage	Data Monetization	Data Markets	infrastructure			data storage
				AI -> DLT	DL	T -> AI

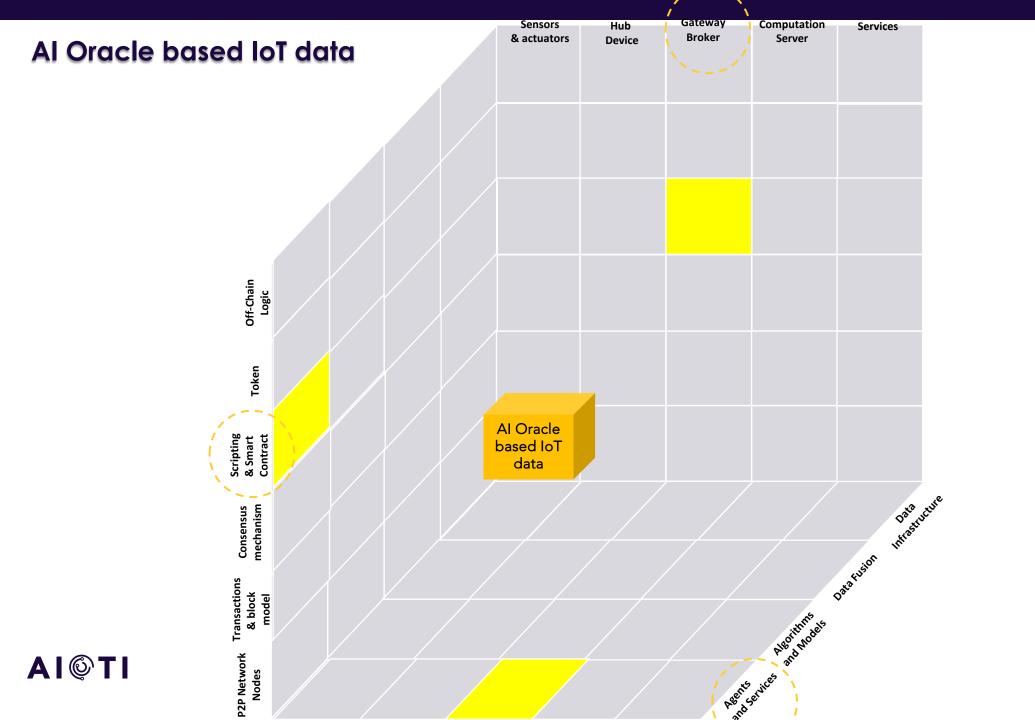
IoT-DLT-Al Convergence Prism

Silvio Meneguzzo, PhD in Blockchain & DLT, University of Turin – Fondazione LINKS


DLT-IOT- AI Convergence Prism


Highlights the possible areas and topics of convergence lying at the intersection of the building blocks of the DLT, IoT and the AI stacks.





Summary of IoT-DLT-AI Convergence Areas

- IoT Devices for on-chain AI
- Remote attestation AI algorithm on Trusted Execution Environment
- Smart Sensor data monetization
- Next Generation Digital Twin
- Al Oracle based IoT data
- Al-driven automatic sensors firmware update
- Supply Chain Transparency and Optimization Platform
- Smart Data Management

Presentation of the Use-Cases

Konstantinos Ntafloukas (Inlecom)

About the Team

inlecom

Enhancing innovation capacity through digital ecosystems

Research. Advancing Technology. Disruptive Business Models

Research & Innovation Consultants.

Established in 1996 with presence in Greece, Belgium, Ireland and the UK

Strong participation in Research Projects. Bringing innovation to industry.

25 ongoing projects, 7 coordinating.

> 40% proposal success rate vs EU <10% average.

> 35 EU-funded completed projects.

> successfully granted patents (80% success rate).

- Applied ICT and Internet of Things
- Transport & Logistics
- Food & Circular economy
- Security
- Energy
- Green buildings & Smart Cities
- Health
- Manufacturing

Background and Industrial/Scientific Challenges

IoT industrial/scientific gaps & Focus

• Lack of security visibility

- Lack of effective information sharing between organisations and availability of tools to the CERTs/CSIRTs
- Heterogeneity of IoT devices extremely challenging to establish a trustworthy environment
- Lack of a common trust enforcement mechanism and relevant standards. Available mechanisms address only security and privacy aspects and rely on centralised authorities while remain vulnerable to threats
 - Not that easy in an artificial society such as IoT
 - Important to quantify "trust" such that it can be understood by the artificial agents
- Firmware and security updates are infrequent and difficult or even impossible
- Lack of a transparent identity and privacy framework to allow the users to maintain full control of their identity and data at the device level
- Lacking security training and security protocols' adoption for persons and devices

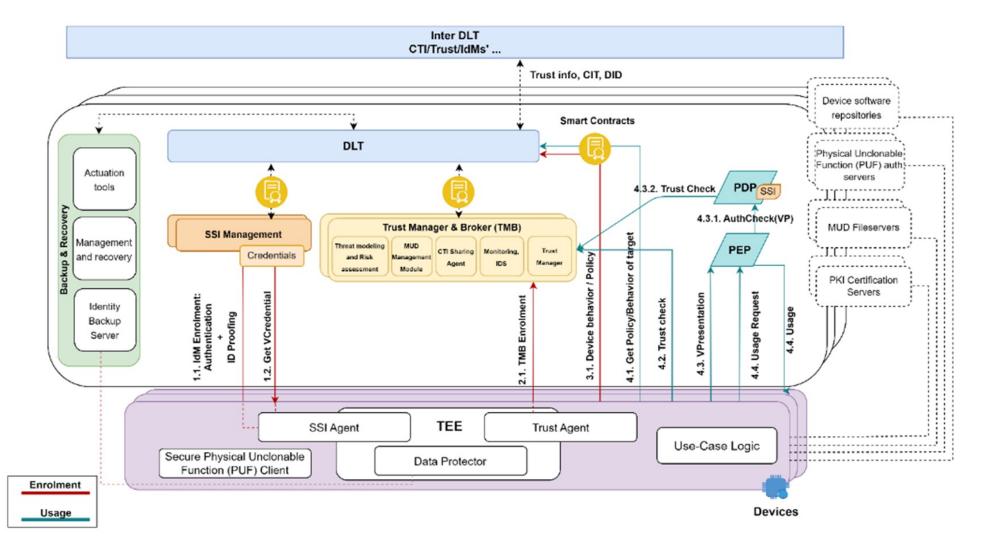
ΑΙ©ΤΙ

ERATOSTHENES Summary

Innovation & Technical Outcomes

- A distributed, automated, auditable, privacy-respectful, **Trust and Identity Management Framework** to manage the lifecycle of IoT devices
- First-ever enclosure of **cybersecurity features in IoT devices** through deployment of Trust Agents
- Decentralized identity management mechanisms
- Self-encryption/decryption with an automated recovery process
- Threat analysis models based on federated learning Integration of Physical Unclonable Functions in trust framework

ERATOSTHENES Summary


Innovation & Technical Outcomes

- First-ever enclosure of cybersecurity features in IoT devices through deployment of Trust Agents and continuous trust evaluation
- Decentralised identity management mechanisms to conciliate requirements of self-sovereignty and privacy preservation in a distributed/transparent trust model
- Self-encryption/decryption at device-level with a whole system automated recovery process
- Threat-analysis models based on federated learning and edge execution
- Collaborative IoT threat intelligence sharing across ledgers to adapt detection/defence mechanisms
- Integration of Physical Unclonable Functions in trust framework and distributed ledgers
- Support enforcement of the NIS directive information sharing based on inter-ledger technologies

ΑΙ©ΤΙ

ERATOSTHENES Architecture

Pilot 1: Connected Vehicles

- Interaction with vehicle (V2V) and road infrastructure (traffic lights).
- Software updates in the vehicle's units.
- Evaluation of the prospective benefits for connected vehicles, that interact both with other vehicles and external roadside elements, such as smart traffic lights.
- These vehicles need to ascertain the trustworthiness of these elements, aiming to prevent potential accidents and safeguard the privacy of the vehicle's driver or owner.

Role of the DLT in Pilot 1

- DLT, in this use case uses blockchain technologies to store information that is used by the modules in the ERATOSTHENES network.
- Everything stored in this solution can be verified by members of the network but cannot be modified.

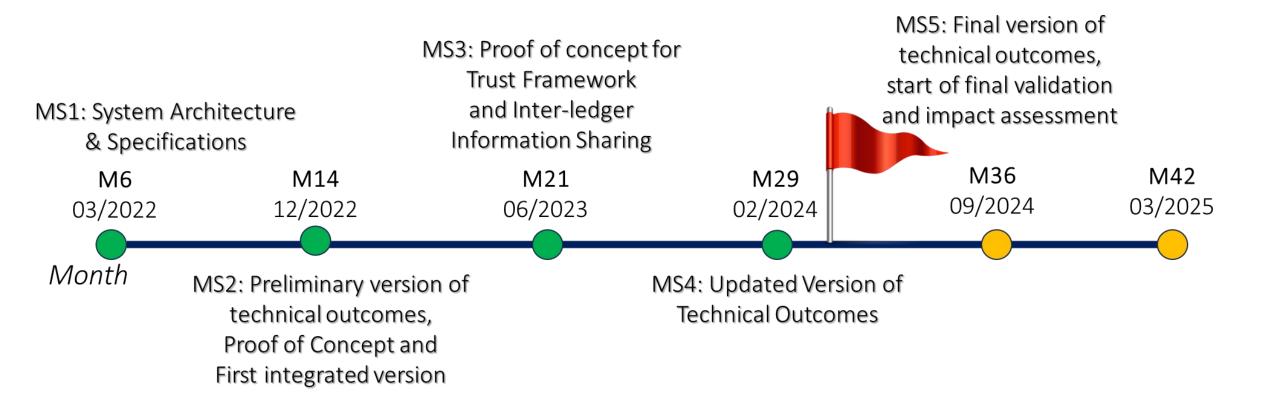
IDS Detection test

🔗 elastic	C, Find apps, content, and more.	*/		O 🖉 🕄
ERA BACON Deshboard V			Full screen Share	Clone Reset 🖉 Edit
lelp us improve the Elastic Stack sage collection is enabled. This allows us to learn who Dismiss	it our users are most interested in, so we can impre	we our products and services. Refer to our Privacy Stat	ement 🗷 Disable usage collec	tion.
CQ Filter your data using KQL syntax			m ~	Last 30 days C Refresh
erts timeline	Alerts timeline (copy)	Top 5 alert classes		
100,000		Top 5 values of class.keyword ~	Count of records \backsim	Median of priority ~
80,000	Count of records	none	81024	1
40,000	102379	Denial of Service	19730	2
20,000		Web Application Attack	1407	1
0 29m 5(h 12m 19m		Potential Corporate Privacy Violation	98	1
alert timestamp per 12 hours		Attempted Information Leak	87	2
rotocol statistics	Engine's detection rules			
ICMP TCP 51.07% 46.27%	Top 3 values of rule.keyword	 Top 3 values of msg.keyword 	¥	Count of records ~
	116:434:1	(icmp4) ICMP ping Nmap		52058
	1:10000004:1	1:1000004:1 Possible DoS Detected 119:1:1 (http_inspect) URI has percent-encoding of an		19730
	119:1:1			5206
	Other	r (stream_tcp) reset outside window		
	Other	(http: inspect) HTTP Content-Length message	e bodu	1671

Pilot 2: Smart Health

- eHealth Remote Patient monitoring use cases.
- Zero-contact enrolment of users and devices
- Integrate with third-party services.
- Extending the platform with private devices
- Emergency situations
- Continuous monitoring and lifecycle management of the Tellu service

Role of the DLT in Pilot 1


- DLT, in this use case uses blockchain technologies to store information that is used by the modules in the ERATOSTHENES network.
- Everything stored in this solution can be verified by members of the network but cannot be modified.

Trust Manager and Broker component &

Docker containers

Databases		Databas	e Name + Create Database
© View	admin		Del
© View	config		ii Del
© View	eratosthenes		E Del
© View	local		E Del
Server Status			
Hostname	4f3b0d271645	MongoDB Version	7.0.2
Uptime	639 seconds	Node Version	18.18.2
Server Time	Fri, 10 Nov 2023 14:10:40 GMT	V8 Version	10.2.154.26-node.26
	6	Available Connections	838854
Current Connection	0	Queued Operations	0
	•		
Current Connection Active Clients Clients Reading	0	Clients Writing	0

Technical Milestones

Scientific, Social and Economic Impact

- Reduced number and impact of cybersecurity incidents
- Efficient and low-cost implementation of the NIS Directive and General Data Protection Regulation
- Effective and timely co-operation and information sharing between and within organisations as well as selfrecovery
- Availability of comprehensive, resource-efficient, and flexible security analytics and threat intelligence
- Self-recovering, interoperable, scalable, dynamic privacy-respecting identity management schemes
- Better standardisation and automated assessment frameworks for secure networks and systems, allowing better-informed investment decisions related to security and privacy
- Availability and widespread adoption of distributed, enhanced trust management schemes including people, smart objects
- Availability of user-friendly and trustworthy on-line products, services and business
- A more competitive offering of secure products and services by European providers in the Digital Single Market

Questions from the Audience

Moderated by: Tom De Block, AIOTI FG DLT and Web3 Chair

Wrap up and end of the Workshop

Tom De Block, AIOTI FG DLT and Web3 Chair

Thank you for listening

Any questions? You can find us at <u>@AIOTI_EU</u> or email <u>sg@aioti.eu</u>

